Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\mathrm{Ca}_{3} \mathrm{Mn}_{2} \mathrm{O}_{7}$

Nicolas Guiblin,* Dominique Grebille, Henri Leligny and Christine Martin

Laboratoire CRISMAT, ISMRA et Université de Caen, 6 Boulevard du Maréchal Juin, 14050 Caen CEDEX, France
Correspondence e-mail: guiblin@ismra.fr
Received 18 July 2001
Accepted 31 October 2001
Online 14 December 2001

The tricalcium dimanganese heptaoxide $\left(\mathrm{Ca}_{3} \mathrm{Mn}_{2} \mathrm{O}_{7}\right)$ member of the Ruddlesden-Popper series $\mathrm{Ca}_{n+1} \mathrm{Mn}_{n} \mathrm{O}_{3 n+1}$, i.e. with $n=2$, was previously reported with an I-centred tetragonal lattice $\left[a_{t}=3.68\right.$ and $c_{t}=19.57 \AA$] by Fawcett, Sunstrom, Greenblatt, Croft \& Ramanujachary [Chem. Mater. (1998), 10, 3643-3651]. It is now found to be orthorhombic, with an A-centred lattice $[a=5.2347$ (6), $b=5.2421$ (2) and $c=$ 19.4177 (19) Å]. The structure has been refined in space group $A 2_{1} a m$ using X-ray single-crystal diffraction data and assuming the existence of twin domains related by the (1 $\overline{1} 0$) plane. A comparison with the basic perovskite structure $\mathrm{CaMnO}_{3}(n=\infty)$ is proposed.

Comment

In order to complete magnetic and electrical measurements on the magnetoresistive manganese oxide perovskite families $\mathrm{Ln}_{1-x} \mathrm{Ca}_{x} \mathrm{MnO}_{3}$ (where Ln is a rare earth element), a structural study of these compounds has been developed, including the end compound $\mathrm{CaMnO}_{3}(x=1)$. From the same CaMnO_{3} preparation, single crystals of a second compound were isolated, exhibiting cell parameters clearly different from those known for CaMnO_{3} (Poeppelmeier et al., 1982; Taguchi et al., 1989; Aliaga et al., 2001). Scanning electron microscopy measurements, coupled with energy dispersive spectroscopic (EDS) analysis, clearly lead to a $\mathrm{Ca}_{3} \mathrm{Mn}_{2}$ cationic composition.

The cell parameters of $\mathrm{Ca}_{3} \mathrm{Mn}_{2} \mathrm{O}_{7}$ are consistent with either an orthorhombic or a tetragonal lattice. They depend both on the a_{p} cubic parameter $\left(a_{p}=3.72 \AA\right)$ of the basic CaMnO_{3} perovskite cell, with CaMnO_{3} representing the $n=\infty$ member of the Ruddlesden-Popper series (Ruddlesden \& Popper, 1958), and on the face-centred cubic cell of $\mathrm{CaO}\left\{a_{O}=4.8 \AA\right.$ [Tanida \& Kitamura, 1981; ref. 41-0421 (ICDD, 1999)]\}. The parameters found in the present work differ from those previously published for $\mathrm{Ca}_{3} \mathrm{Mn}_{2} \mathrm{O}_{7}\left(a_{t} \simeq a_{p}\right.$ and $\left.c_{t} \simeq 4 a_{p}+2 a_{O}\right)$ $2 a_{O}$) (MacChesney et al., 1967; Tanida \& Kitamura, 1981; Fawcett et al., 1998) by the relationships $a \simeq b \simeq a_{t} t^{1 / 2}$ and $c \simeq c_{t}$.

The symmetry of the present crystal was carefully scrutinized both from Laue diagrams (precession camera) and from the intensity distribution in the X-ray diffraction data. The actual Laue symmetry is mmm rather than $4 / \mathrm{mmm}$, as shown by the Laue diffraction pattern, and is confirmed from the $R_{\text {int }}$ values of 4.49 and 9.73% calculated assuming orthorhombic and tetragonal symmetry, respectively. Moreover, some significant reflections of the type $h k l$, where $h+k=2 n+1$, were observed and cannot be explained in the tetragonal model.

The present reflection conditions are consistent with the centrosymmetric space group Amam, but a satisfactory R factor could not be obtained with this symmetry. A new solution was initiated using the direct method calculation program SIR97 (Altomare et al., 1999) in the non-centrosymmetric space group $A 2_{1} a m$ (No. 36). The standard setting of this group is $C m c 2_{1}$, but we adopted the non-standard setting in order to keep the pseudo-tetragonal cell along the c axis. This space group has already been proposed for the $\mathrm{Ca}_{3} \mathrm{Ti}_{2} \mathrm{O}_{7}$ structure by Elcombe et al. (1991) and for $\mathrm{La}_{2-2 x^{-}}$ $\mathrm{Ca}_{1+2 x} \mathrm{Mn}_{2} \mathrm{O}_{7}$ by Bendersky et al. (2001).

The atomic positions were refined to $R=0.023$ using the JANA2000 structural refinement program (Petříček \& Dušek, 2000), with anisotropic displacement parameters for all atoms and assuming the existence of twin domains related by the (1 $\overline{1} 0$) plane, due to the similarity of the a and b parameters, with reference to a pseudo-tetragonal cell. The twin ratio was found to be 0.18 . This twin model leads to a significant improvement of the R factor (0.032 without a twin).

The corresponding structure, with Ca_{1} and O_{1} atoms in $4 a$ crystallographic sites and the other atoms in $8 b$ sites, is shown in Fig. 1(a). It consists of a stacking of two layers formed by corner-sharing MnO_{6} octahedra, separated by a double $\mathrm{Ca}-\mathrm{O}$ layer. This description is consistent with the usual description of the Ruddlesden-Popper $\mathrm{Ca}_{n+1} \mathrm{Mn}_{n} \mathrm{O}_{3 n+1}$ family, which can also be represented by the formula $\mathrm{CaO}\left[\mathrm{CaMnO}_{3}\right]_{n}$, where n is the number of layers of MnO_{6} octahedra.

Three types of polyhedra are present in this structure, one per cation, i.e. $\mathrm{Mn}^{4+}, \mathrm{Ca}^{2+}$ and $\mathrm{Ca} 2^{2+}$. The Mn^{4+} ions are octahedrally coordinated, and the $\mathrm{Mn}-\mathrm{O}$ bond distances in the equatorial plane range from 1.856 (5) to 1.899 (5) \AA, with apical distances of 1.904 (1) and 1.9193 (4) \AA. The corresponding average $\mathrm{Mn}-\mathrm{O}$ distance is 1.890 (3) \AA. Angles within the MnO_{6} octahedra range from 88.7 (1) to 92.0 (2) ${ }^{\circ}$ for $\mathrm{O}-\mathrm{Mn}-\mathrm{O}$ with cis- O atoms, and from 177.9 (2) to 178.4 (1) ${ }^{\circ}$ for $\mathrm{O}-\mathrm{Mn}-\mathrm{O}$ with trans- O atoms.

Comparing the MnO_{6} octahedra in $\mathrm{Ca}_{3} \mathrm{Mn}_{2} \mathrm{O}_{7}$ with those in CaMnO_{3} (Poeppelmeier et al., 1982), we note that the $\mathrm{Mn}-\mathrm{O}$ distances in the equatorial plane of the octahedra are shorter in $\mathrm{Ca}_{3} \mathrm{Mn}_{2} \mathrm{O}_{7}$, while the apical distances are larger, leading to an elongated octahedron in $\mathrm{Ca}_{3} \mathrm{Mn}_{2} \mathrm{O}_{7}$ as opposed to the compressed one in $\mathrm{CaMnO}_{3}(1.865 \AA$ for the apical distances, and 1.900 and $1.903 \AA$ for the equatorial ones).

Atoms $\mathrm{Ca} 1^{2+}$, at $z=0$ and $z=\frac{1}{2}$, are 12 -fold coordinated (usual perovskite coordination), while atoms $\mathrm{Ca}_{2}{ }^{2+}$ are ninefold coordinated. Both Ca 1 and Ca 2 belong to similar CaO layers orthogonal to c. The $\mathrm{O}-\mathrm{O}$ distances in these layers,
represented by dashed lines in Fig. 1(b), clearly show the difference from tetragonal symmetry, due to the MnO_{6} octahedral distortion and tilting, which are forbidden in tetragonal symmetry. This projection clearly shows the analogy with the actual Pnma symmetry of the CaMnO_{3} structure.

The average $\mathrm{Ca}-\mathrm{O}$ distances are 2.646 (4) \AA for the Ca 1 polyhedra and 2.554 (3) \AA for the Ca 2 polyhedra, whereas the average $\mathrm{Ca}-\mathrm{O}$ distance in CaMnO_{3} is $2.652 \AA$. Two short $\mathrm{Ca} 2-\mathrm{O}$ distances ($<2.3 \AA$) are observed (Table 1). The average $\mathrm{Mn}-\mathrm{O}$ and $\mathrm{Ca}-\mathrm{O}$ distances are in good agreement with those predicted by the ionic radii calculated by Shannon (1976), with $r_{\mathrm{Mn}^{4+}}=0.53, r_{\mathrm{Ca}^{2+}}=1.34, r_{\mathrm{Ca}^{2+}}=1.18$ and $r_{\mathrm{O}^{2-}}=$ $1.35 \AA$. Nevertheless, they are shorter than in the CaMnO_{3} parent phase, but longer than in CaO .

Thus, the present structure can be interpreted as the alternate stacking of reduced CaMnO_{3}-type layers and of expanded CaO-type layers. The principal difference from the structure described by Fawcett et al. (1998) results in Mn polyhedra having $\mathrm{Mn}-\mathrm{O}$ distances differing by $\pm 0.03 \AA$ from those calculated using the Shannon radii, contrasting with an

Figure 1
(a) The structure of $\mathrm{Ca}_{3} \mathrm{Mn}_{2} \mathrm{O}_{7}$ in the (100) plane. (b) The $\mathrm{O}-\mathrm{O}$ distances viewed along the c axis show the difference from tetragonal symmetry.

Figure 2
Simulated X-ray diffraction patterns for $\mathrm{Ca}_{3} \mathrm{Mn}_{2} \mathrm{O}_{7}$ in the tetragonal (x) and orthorhombic $(-)$ models. The difference plot is represented at the bottom.
apical $\mathrm{Mn}-\mathrm{O}$ distance of $2.09 \AA$ with the O atom directed towards the CaO layer. This could be related to the alternate tilt of MnO_{6} octahedra, mainly around the x and z axes (Figs. $1 a$ and $1 b$) of 6.8 and 8.3°, respectively, using the formulae of Elcombe et al. (1991). These tilt angles, characterized by $\mathrm{Mn}-\mathrm{O} 1-\mathrm{Mn} \quad 166.5(1)^{\circ}, \quad \mathrm{Mn}-\mathrm{O} 2-\mathrm{Mn}$ 158.9 (2) ${ }^{\circ}$ and $\mathrm{Mn}-\mathrm{O} 3-\mathrm{Mn} 162.5(2)^{\circ}$, are quite compatible with the corresponding angles in CaMnO_{3}.

Simulations of X-ray diffraction powder patterns with $J A N A 2000$ (Fig. 2) in both models show very small differences. This outlines, in the present case, the difficulty of refining the structure with standard X-ray powder diffraction patterns.

Experimental

The initial sample preparation consisted of a mixture of CaO , prepared by decarbonation of CaCO_{3} at 1273 K , and MnO_{2} (Aldrich) in stoichiometric proportions, to produce CaMnO_{3}. The mixture was heated to 1273 K and crushed, three times in succession, so as to obtain a good sample homogeneity, and was then compressed in an isostatic press at $3 \times 10^{7} \mathrm{~Pa}$ in the form of a $\operatorname{rod}(5 \times 50 \mathrm{~mm})$ before sintering at 1673 K for 12 h in air. Crystal growth was carried out in a four-mirror optical floating-zone furnace (Crystal Systems Inc. FZT 10000 H III P). The samples were set to rotate in opposite directions at 20 revolutions per minute and were grown in an oxygen flow at atmospheric pressure, at a feeding speed of $10 \mathrm{~mm} \mathrm{~h}^{-1}$. It is important to state that the previous ceramic synthesis of $\mathrm{Ca}_{3} \mathrm{Mn}_{2} \mathrm{O}_{7}$ could only be performed under a high pressure of oxygen ($3200 \mathrm{psi} ; 1 \mathrm{psi} \simeq$ $6.895 \times 10^{3} \mathrm{~Pa}$) (MacChesney et al., 1967).

Crystal data

$\mathrm{Ca}_{3} \mathrm{Mn}_{2} \mathrm{O}_{7}$
$M_{r}=342.1$
Orthorhombic, $A 2_{1} \mathrm{am}$
$a=5.2347(6) \AA$
$b=5.2421(2) \AA$
$c=19.4177(19) \AA$
$V=532.83(8) \AA^{3}$
$Z=4$
$D_{x}=4.266 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=11-24^{\circ}$
$\mu=7.61 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prism, black
$0.12 \times 0.07 \times 0.02 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: Gaussian (JANA2000; Petříček \& Dušek, 2000)
$T_{\text {min }}=0.619, T_{\text {max }}=0.865$
10766 measured reflections
1516 independent reflections (plus
1318 Friedel-related reflections)

Refinement

Refinement on F
$R=0.023$
$w R=0.015$
$S=1.45$
1516 reflections
59 parameters
$w=1 / \sigma^{2}(F)$
$(\Delta / \sigma)_{\max }<0.001$

745 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=50^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-41 \rightarrow 41$
3 standard reflections frequency: 60 min intensity decay: 0.2%

Table 1
Selected interatomic distances (\AA).

$\mathrm{Mn}-\mathrm{O} 1$	1.9193 (4)	$\mathrm{Ca} 1-\mathrm{O} 3^{\text {iii }}$	2.548 (3)
$\mathrm{Mn}-\mathrm{O} 2{ }^{\text {i }}$	1.873 (4)	$\mathrm{Ca} 1-\mathrm{O}^{\text {v }}$	2.996 (4)
$\mathrm{Mn}-\mathrm{O}^{2 i}$	1.900 (5)	$\mathrm{Ca} 1-\mathrm{O}^{\text {viii }}$	2.548 (3)
$\mathrm{Mn}-\mathrm{O} 3$	1.857 (5)	$\mathrm{Ca} 1-\mathrm{O} 3^{\text {ii }}$	2.996 (4)
$\mathrm{Mn}-\mathrm{O}^{\text {ii }}$	1.885 (4)	$\mathrm{Ca} 2-\mathrm{O} 2^{\text {vi }}$	2.884 (4)
$\mathrm{Mn}-\mathrm{O} 4$	1.9048 (10)	$\mathrm{Ca} 2-\mathrm{O} 2{ }^{\text {ii }}$	2.406 (3)
Ca1-O1	2.755 (5)	$\mathrm{Ca} 2-\mathrm{O}^{\text {iii }}$	2.293 (4)
$\mathrm{Ca} 1-\mathrm{O} 1^{\text {iii }}$	2.499 (5)	$\mathrm{Ca} 2-\mathrm{O} 3^{\text {ii }}$	2.598 (4)
$\mathrm{Ca} 1-\mathrm{O} 1^{\text {iv }}$	2.856 (3)	$\mathrm{Ca} 2-\mathrm{O} 4$	2.526 (4)
$\mathrm{Ca} 1-\mathrm{O}^{\mathrm{v}}$	2.393 (3)	$\mathrm{Ca} 2-\mathrm{O} 4^{\text {iii }}$	2.730 (4)
$\mathrm{Ca} 1-\mathrm{O} 2^{\text {vi }}$	2.694 (4)	$\mathrm{Ca} 2-\mathrm{O} 4^{\text {ix }}$	2.2968 (11)
$\mathrm{Ca} 1-\mathrm{O} 2^{\text {v }}$	2.391 (3)	$\mathrm{Ca} 2-\mathrm{O} 4^{\text {x }}$	2.438 (2)
$\mathrm{Ca} 1-\mathrm{O}^{\text {vii }}$	2.694 (4)	$\mathrm{Ca} 2-\mathrm{O} 4^{\text {ii }}$	2.821 (2)
$\mathrm{Ca} 1-\mathrm{O} 2^{\text {ii }}$	2.391 (3)		

Symmetry codes: (i) $x, y-1, z$; (ii) $\frac{1}{2}+x, 1-y, z$; (iii) $1+x, y, z$; (iv) $\frac{1}{2}+x,-y,-z$; (v) $\frac{1}{2}+x, 1-y,-z$; (vi) $1+x, y-1, z$; (vii) $1+x, y-1,-z$; (viii) $1+x, y,-z$; (ix) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z ;(\mathrm{x}) \frac{1}{2}+x,-y, z$.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1994); cell refinement: CAD-4-PC Software; data reduction: JANA2000 (Petříček \& Dušek, 2000); program(s) used to solve structure: JANA2000 and SIR97 (Altomare et al., 1999) program(s) used to
refine structure: JANA2000; molecular graphics: ATOMS (Dowty, 1997); software used to prepare material for publication: JANA2000.

The authors are indebted to Mrs Laurence Hervé and Mrs Josiane Chardon for the sample preparation and data collection, respectively, and to Dr André Leclaire for helpful discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1169). Services for accessing these data are described at the back of the journal.

References

Aliaga, H., Causa, M. T., Alascio, B., Salva, H., Tovar, M., Vega, D., Polla, G., Leyva, G. \& Konig, P. (2001). J. Magn. Magn. Mat. 226-230, 791-793.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Becker, P. \& Coppens, P. (1974). Acta Cryst. A30, 129-147.
Bendersky, L. A., Chen, R., Fawcett, I. A. \& Greenblatt, M. (2001). J. Solid State Chem. 157, 309-323.
Dowty, E. (1997). ATOMS for Windows. Version 4.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Elcombe, M. M., Kisi, E. H., Hawkins, K. D., White, T. J., Goodman, P. \& Matheson, S. (1991). Acta Cryst. B47, 305-314.
Enraf-Nonius (1994). CAD-4-PC Software. Version 1.5c beta. Enraf-Nonius, Delft, The Netherlands.
Fawcett, I. D., Sunstrom, J. E. IV, Greenblatt, M., Croft, M. \& Ramanujachary, K. V. (1998). Chem. Mater. 10, 3643-3651.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
ICDD (1999). PCPDFWIN. Version 2.02. International Centre for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 19073-3273, USA.
MacChesney, J. B., Williams, H. J., Potter, J. F. \& Sherwood, R. C. (1967). Phys. Rev. 164, 779-785.
Petřićček, V. \& Dušek, M. (2000). JANA2000. Institute of Physics, Prague, Czech Republic.
Poeppelmeier, K. R., Leonowicz, M. E., Scanlon, J. C., Longo, J. M. \& Yelon, W. B. (1982). J. Solid State Chem. 45, 71-79.

Ruddlesden, S. N. \& Popper, P. (1958). Acta Cryst. 11, 54-55.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Taguchi, H., Nagao, M., Sato, T. \& Shimada, M. (1989). J. Solid State Chem. 78, 312-315.
Tanida, K. \& Kitamura, T. (1981). Reference No. 41-0421 in PCPDFWIN (Version 2.02). International Centre for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 19073-3273, USA.

